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Introduction DRACO: Robust SGD via Coding Theory
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Goal: build a robust version of SGD that is:
•  Computational cheap
•  Black-box convergence guarantee

Challenge: robustness of distributed optimization algorithms
•  Distributed Training vulnerable to attacks
•  Vanilla SGD is not robust against a single adversary

Key Idea: 
•  Defend via algorithmic redundancy 
•  Borrow tools from coding theory

Defend via Majority

Adversary

Group 1 Group 2Adversary

x1 x3x2 x4 x6x5

x2 x2x3

x3 x1 x1

x4 x4x5

x5x6 x6

g1 + g2 + g3 g4 + g5 + g6

Majority VotingPS

•  Each group computes the same sum of gradients
•  PS uses majority to select true sum of gradients
•  if fewer than half of nodes/ group are adversarial,

=> majority returns true gradient
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DRACO: Robust Distributed Training via Redundant Gradients

2. Preliminary
Distributed Training The process of training a model
from data can be cast as an optimization problem known as
empirical risk minimization (ERM):

min

w

1

n

nX

i=1

`(w;xi)

where xi 2 Rm represents the ith data point, n is the total
number of data points, w 2 Rd is a parameter vector, and
`(·; ·) is a loss function that measures the accuracy.

One way to approximately solve the above ERM is through
stochastic gradient descent (SGD), which operates as fol-
lows: wk = wk�1 � � · r`(wk�1;xik), where ik is a ran-
dom data-point index sampled from {1, . . . , n}, and � > 0

is the learning rate. Distributed variants of SGD often have
the PS perform updates in a similar way to serial SGD af-
ter amalgamating the output of the compute nodes. In this
work, we consider mini-batch SGD, one of the most widely
implemented variants of SGD in distributed systems, which
operates as follows. The PS stores a global model, and trans-
mits a subset of the n data points to each of the P compute
nodes. During the computation phase of mini-batch SGD,
each of the P compute nodes samples B/P data points
from its local subset of the data and computes the sum of
the gradients of these sampled data points, and then ships
it back to the PS. The PS, upon receiving the gradient up-
dates, applies them to the global model (via averaging), and
sends the updated model back to the compute nodes. The
algorithm then continues on to its next distributed iteration.
Remark 1. In contrast to previous works, our framework
is applicable to any distributed training algorithms whose
update steps only require the average of the functions being
compute in a distributed manner. Thus, our framework
applies to variants of SGD to agorithms such as SVRG and
coordinate descent, as well as optimization methods such
as LBFGS (Nocedal & Wright, 2006; Bottou et al., 2016).
We leave a detailed discussion to the appendix. For the sake
of simplicity, our discussion in the rest of the text will focus
on mini-batch SGD.

Adversarial Nodes Consider the case where a subset of
nodes can act adversarially against the training process. The
goal of an adversary can either be to completely mislead the
end model, or bias it towards specific areas of the parameter
space.
Definition 2.1. A compute node is considered to be an ad-
versarial node, if it does not return the prescribed gradient
update given its allocated samples. Such a node can ship
back to the PS any arbitrary update of dimension equal to
that of the true gradient.

It is known that mini-batch SGD fails to converge even if

there is only a single adversarial node (Blanchard et al.,
2017).

2.1. DRACO Framework

We can generalize the scheme in Figure 1 (b) to P compute
nodes and B data samples. As shown in Figure 2, DRACO
is cast as a tuple (A,D,E), where A 2 RP⇥B is the allo-
cation matrix such that Aj,k indicates if the jth node stores
the kth data point. The support of Aj,·, supp (Aj,·) corre-
sponds to all gradients evaluated by the j-th compute node.
The redundancy ratio r =

P
B maxj ||Aj,·||0 indicating how

much redundancy is added. Each compute node Wj sends
to the PS Ej , which is computed based on the gradients of
its local data. If jth node is adversarial then it may send
an arbitrary vector ✏j + Ej . Upon receiving the gradient
updates E = [E1,E2, · · · ,EP ] (where up to s of them can
be corrupted) from all compute nodes, the PS uses a decoder
function D to recover and feeds to a gradient-based opti-
mizer the sum of all gradients G , [g1, g2, · · · , gP ], i.e.,
G1.
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Figure 2. During DRACO each compute nodes is allocated a subset
of the data set, in a systematic way that we define in Section 3.
Each compute node will compute redundant gradients which will
then be encoded by a local encoder function Ei. After encoding
each compute node ship an update vector to the parameter server.
During that we assume that up to s workers can send arbitrary
functions of the data. At the PS side, the received vectors will pass
through a decoder that is able to detect who the adversaries are
and remove their effect from the received equations. This way the
output of the decoder is the full sum of the gradients originally
intended to be received at the PS. The PS then applies the updates
and the algorithm continues on to its next distributed iteration.

This framework of (A,D,E) includes both SGD and the
GM approach. In order to guarantee convergence, we want
to ensure that DRACO exactly recovers the desired gradient,
regardless of the behavior of the adversarial nodes. This
implies that DRACO will protect against worst-case adver-
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Pros:
- Small PS complexity 
- DRACO model = SGD model
- Convergence for free

Cons:
- Redundancy seems wasteful

Thm1:
   To tolerate s adversaries, 
  we need r > 2s

Thm2:
      DRACO is optimal

Convergence

•  Cifar10 on ResNet-18
•  45 compute nodes
•  m4.2xlarge instances of EC2
•  1,3,5 Adversaries
•  System in PyTorch + OpenMPI

Runtimes on Large-scale Models
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•  DRACO ~5x faster at 88% 
•  Median never reaches 90%

•  DRACO ~5x slower during compute 
•  Median ~20x slower during averaging
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