DRACO: Robust Distributed Training against Adversaries

Lingjiao Chen, Hongyi Wang, Zachary Charles, Dimitris Papailiopoulos

University of Wisconsin-Madison {Ichen, hongyiwang}@cs.wisc.edu, zcharles@math.wisc.edu, dimitris@papail.io

Introduction

Challenge: robustness of distributed optimization algorithms

- Distributed Training vulnerable to attacks
- Vanilla SGD is not robust against a single adversary

Goal: build a robust version of SGD that is:

- Computational cheap
- Black-box convergence guarantee

Key Idea:

- Defend via algorithmic redundancy
- Borrow tools from coding theory

DRACO: Robust SGD via Coding Theory

Concept

Defend via Majority Majority Voting $\mathbf{g}_1 + \mathbf{\hat{g}}_2 + \mathbf{\hat{g}}_3$ $+\,{f g}_5+{f g}_6$ \mathbf{x}_1 X_3 \mathbf{X}_4 \mathbf{x}_5 \mathbf{x}_6 \mathbf{X}_2 \mathbf{x}_3 \mathbf{x}_2 \mathbf{x}_5 \mathbf{X}_4 \mathbf{x}_4 \mathbf{x}_1 \mathbf{x}_3 \mathbf{x}_1 \mathbf{x}_6 \mathbf{x}_6 X_5 Group I Group 2 Each group computes the same sum of gradients

PS uses majority to select true sum of gradients
if fewer than half of nodes/ group are adversarial,

=> majority returns true gradient

Experiments

Acknowledgement: The experimental part of this work was supported in part by AWS EC2 credits from Amazon. We thank Jeffrey Naughton and Remzi Arpaci-Dusseau for invaluable discussions