Convergence and Runtime of Approximate Gradient Coded Gradient Descent

Hongyi Wang! Zachary Charles

Abstract

Gradient coding mitigates system delays in dis-
tributed gradient descent (GD) by introducing re-
dundancy. Prior work has shown that exact gra-
dient coded gradient descent (EGC-GD), which
recovers the true gradient at each iteration, can
significantly outperform uncoded GD. Approxi-
mate gradient coded gradient descent (AGC-GD)
further reduces system delays by only computing
approximate gradients. In this work, we estab-
lish explicit convergence rates for AGC-GD and
show that under a probabilistic delay model, its
expected runtime is faster than both EGC-GD
and uncoded GD. We also provide a real sys-
tems implementation of AGC-GD. We use this
implementation to conduct extensive experiments
on real world datasets and distributed clusters,
demosntrating that AGC-GD leads to significant
speedups over both EGC-GD and uncoded GD.

1. Introduction

In order to contend with the size and scale of modern
data and models, many production-scale machine learn-
ing solutions employ distributed training methods. Ideally,
distributed implementations of learning algorithms have
speedups that scale linearly with the number of compute
nodes. Unfortunately, in practice these gains fall short of
this, even with a small number of compute nodes. Sev-
eral studies (Dean et al., 2012; Qi et al., 2017; Grubic et al.,
2018), have consistently reported a tremendous gap between
ideal and realizable speedup gains. One cause of this is the
presence of straggler nodes, compute nodes whose runtime
is significantly slower than the average node in the system.
Stragglers become especially problematic when running
synchronous distributed algorithms such as GD.

Recent work has used coding theory to mitigate the effects

"University of Wisconsin-Madison.
Zachary Charles <zcharles@wisc.edu>.

Correspondence to:

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

' Dimitris Papailiopoulos '

of stragglers. (Tandon et al., 2017) used gradient codes to
mitigate stragglers in distributed gradient-based algorithms.
Their gradient coding methods are able to compute the sum
of n gradients using fewer than n compute nodes by assign-
ing more tasks per worker. Unfortunately, if the number of
tasks per worker is not too large, this may require waiting
for nearly all the compute nodes to finish. A reasonable
alternative to this are approximate gradient codes (AGCs),
which only recover an approximate sum of gradients. AGCs
require fewer non-stragglers, and utilize the observation that
first order methods are often robust to small amounts of
noise (Mania et al., 2017).

Our Contributions We provide detailed convergence rate
and runtime of analyses of AGC-GD under the Polyak-
Lojasiewicz (PL) condition, a non-convex generalization of
strong convexity. While GD achieves linear convergence
rates on such functions, SGD only achieves a rate of O(1/T")
(Karimi et al., 2016). We show that despite its stochasticity
AGC-GD achieves linear convergence down to a small noise
floor. Next, we use the probabilistic runtime model in (Lee
et al., 2016) to analyze the expected runtime of AGC-GD.
We show that given n compute nodes, AGC-GD is roughly
log(n) faster than both EGC-GD and uncoded GD. Finally,
we provide extensive empirical comparisons of these meth-
ods. Our results generally show that AGC-GD leads to up
to 6x and 3 x faster distributed training over uncoded GD
and EGC-GD, respectively.

Related Work Prior strategies for mitigating stragglers in-
cludes replicating jobs across nodes (Shah et al., 2016) and
dropping straggler nodes (Ananthanarayanan et al., 2013).
(Lee et al., 2016) proposed the use of erasure codes for
speeding up the computation of linear functions in dis-
tributed learning systems. Since then, many other works
have analyzed the use of coding theory for distributed tasks
with linear structure (Fahim et al., 2017; Park et al., 2018;
Lee et al., 2017; Dutta et al., 2016; Yu et al., 2017). For
nonlinear tasks, various gradient coding methods have been
proposed (Tandon et al., 2017; Raviv et al., 2017; Halbawi
etal., 2018; Li et al., 2018; Ye & Abbe, 2018) that analyze
various theoretial and practical concerns of gradient codes.

AGCs have been shown to need many fewer non-straggler
nodes. (Raviv et al., 2017; Charles et al., 2017). While



Convergence and Runtime of Approximate Gradient Coded Gradient Descent

(Karakus et al., 2017) developed AGCs for problems relat-
ing to least-squares, (Raviv et al., 2017; Charles et al., 2017;
Charles & Papailiopoulos, 2018) use AGCs in non-linear
settings. (Raviv et al., 2017) uses expander graphs to con-
struct approximate gradient codes with small error in the
worst-case straggler setting, (Charles et al., 2017) focuses
on the setting where the stragglers are chosen randomly. The
aforementioned work generally only analyze proxies to the
convergence rates of AGCs, and lack careful convergence
rate and runtime analyses.

2. Gradient Coding

Suppose we wish to minimize f(z) = L 3" | fi(z) using
k compute nodes and one master node, often referred to as
the parameter server (PS). In order to apply GD, we need to
compute V f;(x) for all ¢. In uncoded GD, the PS sends x to
each node and partitions the n gradient computations among
the nodes. After finishing, the nodes send their output back
to the PS, which averages them and updates x. To avoid
having to wait for the slowest node to finish, (Tandon et al.,
2017) used gradient coding to ensure they could compute
V f(x) from proper subsets of the k& compute nodes.

In gradient coding, each node is assigned c of n possible
tasks, with some amount of redundancy in the task assign-
ment. After waiting for some number of compute nodes to
finish, the PS takes a linear combination of the outputs of
the non-straggler nodes and uses this as a gradient update.
A gradient code consists of a choice of task assignment (en-
coding) and linear combination given a set of non-stragglers
(decoding). In exact gradient coding, the PS waits until
enough nodes finish such that the PS can compute V f(z)
exactly, while in approximate gradient coding it does not.

We focus on the fractional repetition code (FRC) from (Tan-
don et al., 2017). While first used for exact gradient coding,
it was used for approximate gradient coding in (Charles
et al., 2017). Let £ = kc/n and for simplicity, assume ¢
is a positive integer. The FRC works as follows. The first
£ nodes are assigned the first c tasks, the second ¢ nodes
assigned the next c tasks, and so on. After waiting for r < n
of the compute nodes to finish, the PS decodes by taking the
sum of outputs of one non-straggler node from each of the
n/c groups (if that group has a non-straggler nodes). The
output of the FRC is

n/c

o) = -3 Viglil(a) m
i=1

where g[i|(z) = Z;fl V fe(i—1)+; () and Y; is an indica-
tor variable denoting whether or not there is a non-straggler

among nodes {¢(i — 1) +1,...,¢i}.

Given xg, we iteratively update via x;11 = x¢ — vg(z).
Note that uncoded GD is the special case when n/k. (Tan-

don et al., 2017) shows that if » > k& — ¢ + 1, then no matter
which nodes are stragglers, g(x) = V f(x), so the update
is the same as uncoded GD. EGC-GD is the above update
method when r» = k — ¢ + 1, and AGC-GD is the method
when r < k — ¢ + 1. Note that AGC-GD is inherently
stochastic, as g(x) may not equal the true gradient V f(z).

3. Theory

Convergence Analysis We first analyze the convergence
rate of AGC-GD using techniques inspired by the analysis
of GD on PL functions in (Karimi et al., 2016). Let A =
E[f(xr) — f*]. We then have the following theorem.

Theorem 1. Suppose that f is B-smooth and u-PL with
B > > 0and that for all i € [n] and z, |V f;(z)| < o.
Further suppose that ¢ > nn(2)/r. If v = 371, then

T

1— —cr/n 9 —cr/n 2

Ar < <1( < ),u> Ao+7ce 7.
8 un

When n is large and r is a constant fraction of n, this shows
that AGC-GD has similar convergence rates to EGC-GD
and uncoded GD on PL functions.

Probabilistic Runtime Analysis We next analyze the ex-
pected runtime of uncoded, EGC-, and AGC-GD. We as-
sume n = k to make our results easier to parse. Analogous
results can be derived when n > k. As in (Lee et al., 2016),
we assume that the amount of time required to compute a
full gradient update on a single node is a continuous non-
negative random variable 7, with cumulative distribution
function Q(¢). When the algorithm is partitioned in to B
subtasks, we assume that each of the B subtasks has inde-
pendent runtime 7; with cumulative distribution function
Q(Bt). This assumes the job partitioning is symmetric and
that all compute nodes have the same compute power.

(Lee et al., 2016) found that empirically, Q(t) is close to the
cumulative distribution of a shifted exponential distribution.
We therefore assume P[Ty < t] = Q(t) = 1 — e M=),
Here A is the straggling parameter. If X\ is smaller, the
straggler effect is more pronounced. We then analyze the
expected amount of time uncoded GD, EGC-GD, and AGC-
GD require to achieve a given accuracy e.

Let Ag = f(xz0) — f*. Assume f is p-PL and -smooth,
and let kK = p/B8. In AGC-GD, suppose r = dn for § €
(0,1). Suppose 1/ is a positive integer. By (Lee et al.,
2016), the expected runtime of EGC-GD is minimized when
¢ := 1/ tasks per worker. To obtain a fair comparison,
we assume ¢ = 1/ in both EGC-GD and AGC-GD. Let
n=1—e /" =1—e . For reasonable values of ¢, 1
is close to 1. We get the following theorem.

Theorem 2. Let TV TFSC TAGC denote the amount
of time required for uncoded, EGC-, and AGC-GD with



Convergence and Runtime of Approximate Gradient Coded Gradient Descent

step-size v = 1/ to reach error €. If € > 3ce="/"a? /n,

e log(Ag/e) clog(n) +c+1
B -

EGC log(Ag/e)  clog(n/c) +c+1
B < /@ —w) PR

1
- 10g(3A0/E) 02 IOg (m) + 02 +c
—_ 1 M
log (71—%) n
Therefore, AGC-GD can lead to almost a log(n) speedup
over uncoded GD and EGC-GD, even up to error levels as

small as e~ ¢/n. In particular, as n — oo, the speedup gain
of AGC-GD increases while the error level tends to 0.

E[TA°C)

4. Experiments

We compare AGC-GD, uncoded GD, and EGC-GD on vari-
ous logistic regression and least-squares tasks. While con-
vex, such problems often have hundreds of thousands of
features. Note that AGC-GD will stop earlier if some max-
imum fraction ¢ of the compute nodes have finished. For
each experimental setup, we tune § to get the best end-to-end
performance.

Experimental Setup We implemented all algorithms in
python using MPI4py (Dalcin et al., 2011). We compared
uncoded GD, EGC-GD, and AGC-GD with different redun-
dancies across a distributed cluster consists of a PS node
and 30 compute nodes. The compute nodes are m1 . small
instances on Amazon EC2. We used a larger instance
c3.8xlarge as our PS node. Each worker is initially
assigned a number of partitions of the data, with the number
depending on the method used. In the ¢-th iteration, the PS
broadcasts the latest model x; to all workers. Each worker
computes the gradient(s) of this model with respect to their
data partition. Each worker then sends their gradient(s) to
the PS. For uncoded GD and EGC-GD, we udpate the model
once enough workers have finished such that we can com-
pute the full gradient. In AGC-GD, we only wait for a fixed
fraction § of the workers to finish. We also performed ver-
sions of our experiments with extra artificial delays (using
time.sleep) in the nodes to simulate practical scenarios
where the communication overheads are heavy. The delay
(in seconds) for each worker is drawn independently from
an exponential distribution with parameter A = 1/2.

While experimental results are shown just for logistic re-
gression on the Amazon Employee Access dataset', other
experiments are given in the extended version of this paper.
We deployed one-hot encoding on each feature, and com-
pared test set AUC (Bradley, 1997) of the three methods as
a function of total time.

! kaggle.com/c/amazon-employee-access-challenge

0.9

o
0

EGC c=2

Test set AUC
o
~

--- EGCc=3
0.6 --- AGCc=2
—— AGC c=3
—— Uncoded
0.5
0 20 40 60 80
Wallclock Time (Sec)
(a) Convergence
25
9]
(]
£2.0
@
=15
&
0 1.0
£
0.5
0.0

AGC AGC EGC
c=2 c¢=3 «c¢=2 c=3

EGC Uncoded

(b) Per ter runtime

0.75 HEHZYQNWESE 2.3x | 3.83X
0.78 1RV ENHIHE 2.13x  3.36X

0.83 TNV ERNNPE 2.31x 3.43x

Test AUC

0.85 1 AiPAC BSRENAE 2.26x  3.38x

AGC AGC EGC EGC
c=2 c¢=3 c¢c=2 c=3

(c) Speedups

Figure 1. Results on Amazon dataset with artificial simulated strag-
glers: (a) convergence performance, (b) per iteration runtime, (c)
Speedups of AGC and EGC over uncoded GD

Results The average times per iteration on the Amazon
dataset are given in Figure 1(b), while the time to reach
a given test AUC is given in Figure 1(a). Here, we as-
sign ¢ = 2 or ¢ = 3 tasks per worker. For both ¢, we
wait for at most 11/30 =~ 36.7% of the workers to finish.
Intuitively, as ¢ increases we want to decrease d, as other-
wise AGC-GD will, with high probability be indistinguish-
able from EGC. Our results show that both AGC-GD and
EGC-GD outperform uncoded GD. Moreover, as in our the-
ory, AGC-GD consistently converges faster than EGC-GD.
Speedups for both AGC-GD and EGC-GD were measured
under simulated straggler effect. As shown in Figure 1,
we observed that both AGC-GD and EGC-GD perform sig-
nificantly faster than uncoded GD. Moreover, for a fixed
redundancy ratio ¢, AGC-GD attains up to 3 times speedup
gain over EGC-GD.


kaggle.com/c/amazon-employee-access-challenge

Convergence and Runtime of Approximate Gradient Coded Gradient Descent

References

Ananthanarayanan, G., Ghodsi, A., Shenker, S., and Stoica,
I. Effective straggler mitigation: Attack of the clones. In
NSDI, volume 13, pp. 185-198, 2013.

Bradley, A. P. The use of the area under the roc curve in
the evaluation of machine learning algorithms. Pattern
recognition, 30(7):1145-1159, 1997.

Charles, Z. and Papailiopoulos, D. Gradient coding via the
stochastic block model. arXiv preprint arXiv:1805.10378,
2018.

Charles, Z., Papailiopoulos, D., and Ellenberg, J. Approx-
imate gradient coding via sparse random graphs. arXiv
preprint arXiv:1711.06771,2017.

Dalcin, L. D., Paz, R. R., Kler, P. A., and Cosimo, A. Parallel
distributed computing using python. Advances in Water
Resources, 34(9):1124-1139, 2011.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M.,
Mao, M., Senior, A., Tucker, P, Yang, K., Le, Q. V., et al.
Large scale distributed deep networks. In Advances in
Neural Information Processing Systems, pp. 1223-1231,
2012.

Dutta, S., Cadambe, V., and Grover, P. Short-dot: Com-
puting large linear transforms distributedly using coded
short dot products. In Advances In Neural Information
Processing Systems, pp. 2100-2108, 2016.

Fahim, M., Jeong, H., Haddadpour, F., Dutta, S., Cadambe,
V., and Grover, P. On the optimal recovery threshold of
coded matrix multiplication. In Communication, Control,
and Computing (Allerton), 2017 55th Annual Allerton
Conference on, pp. 1264—1270. IEEE, 2017.

Grubic, D., Tam, L., Alistarh, D., and Zhang, C. Syn-
chronous multi-GPU deep learning with low-precision
communication: An experimental study. 2018.

Halbawi, W., Azizan, N., Salehi, F., and Hassibi, B. Im-
proving distributed gradient descent using reed-solomon
codes. In 2018 IEEE International Symposium on Infor-
mation Theory (ISIT), pp. 2027-2031. IEEE, 2018.

Karakus, C., Sun, Y., and Diggavi, S. Encoded distributed
optimization. In Information Theory (ISIT), 2017 IEEE
International Symposium on, pp. 2890-2894. IEEE, 2017.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the polyak-tojasiewicz condition. In Joint European Con-
ference on Machine Learning and Knowledge Discovery
in Databases, pp. 795-811. Springer, 2016.

Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D., and
Ramchandran, K. Speeding up distributed machine learn-
ing using codes. In Information Theory (ISIT), 2016
IEEE International Symposium on, pp. 1143-1147. IEEE,
2016.

Lee, K., Pedarsani, R., Papailiopoulos, D., and Ramchan-
dran, K. Coded computation for multicore setups. In
Information Theory (ISIT), 2017 IEEE International Sym-
posium on, pp. 2413-2417. 1EEE, 2017.

Li, S., Kalan, S. M. M., Avestimehr, A. S., and
Soltanolkotabi, M. Near-optimal straggler mitigation
for distributed gradient methods. In 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 857-866. IEEE, 2018.

Mania, H., Pan, X., Papailiopoulos, D., Recht, B., Ramchan-
dran, K., and Jordan, M. 1. Perturbed iterate analysis for
asynchronous stochastic optimization. SIAM Journal on
Optimization, 27(4):2202-2229, 2017.

Park, H., Lee, K., Sohn, J.-y., Suh, C., and Moon, J. Hierar-
chical coding for distributed computing. arXiv preprint
arXiv:1801.04686, 2018.

Qi, H., Sparks, E. R., and Talwalkar, A. Paleo: A perfor-
mance model for deep neural networks. In Proceedings
of the International Conference on Learning Representa-
tions, 2017.

Raviv, N., Tamo, I., Tandon, R., and Dimakis, A. G. Gradi-
ent coding from cyclic mds codes and expander graphs.
arXiv preprint arXiv:1707.03858, 2017.

Shah, N. B., Lee, K., and Ramchandran, K. When do
redundant requests reduce latency? IEEE Transactions
on Communications, 64(2):715-722, 2016.

Tandon, R., Lei, Q., Dimakis, A. G., and Karampatziakis, N.
Gradient coding: Avoiding stragglers in distributed learn-
ing. In International Conference on Machine Learning,
pp. 3368-3376, 2017.

Ye, M. and Abbe, E. Communication-computation efficient
gradient coding. arXiv preprint arXiv:1802.03475, 2018.

Yu, Q., Maddah-Ali, M., and Avestimehr, S. Polynomial
codes: an optimal design for high-dimensional coded
matrix multiplication. In Advances in Neural Information
Processing Systems, pp. 4403-4413, 2017.



