
Hongyi Wang (hongyiwa@andrew.cmu.edu), Carnegie Mellon University Research Statement

Fast and Easy Large-scale Machine Learning via Algorithm and System Co-design

Foundation models (FMs), e.g., GPT-4 and Llama2, are at the forefront of advances in machine learning (ML). These
large models undergo pre-training on extensive datasets and are subsequently fine-tuned for specialized tasks, demon-
strating proficiency in domains such as natural language and image processing [1]. Nonetheless, the development of
FMs demands substantial computational resources and a deep understanding of distributed ML and systems. A case
in point is the 70B-parameter Llama2, which required 35 days of training time on 2,048 NVIDIA A100 GPUs [2].

There is thus a pressing need to develop efficient distributed ML algorithms and systems that scale across various
computing environments, such as high-performance computing clusters or decentralized commodity hardware.
Current distributed ML methods often face hurdles in computation and communication efficiency, hindering ideal
scalability, particularly for FMs that involve an immense count of parameters. This situation gives rise to significant
challenges at the juncture of ML and systems.

Research summary. I have developed efficient distributed ML and federated learning (FL) algorithms and systems
that deliver tangible computation and communication speedups in distributed clusters, e.g., those on Amazon EC2.
In addition to these advancements, I have explored the robustness of distributed ML and FL algorithms against
malicious compute nodes and hardware failure. My research has led to several industry adoptions and a Rising
Stars Award from the Conference on Parsimony and Learning (CPAL). I also lead the distributed training team of
the LLM360.ai open-source LLM initiative. My contributions can be classified into three categories, as follows:

1. Computation and communication-efficient training by low-rank approximation. I developed ATOMO, the
first low-rank gradient factorization method for communication-efficient training [3]. My subsequent work fully
bypassed gradient compression by directly training low-rank models [4, 5]. These frameworks, seamlessly compati-
ble with existing ML systems like PyTorch, offer significant improvements in computation and communication
efficiency without compromising model quality. The aforementioned approaches have been adopted by Sony
to accelerate their internal model training for product development. Additionally, my low-rank methods have
partially inspired subsequent research, such as the Low-Rank Adaptation (LoRA) parameter-efficient fine-tuning
(PEFT) method, which essentially employs a similar low-rank approach [6].

2. Hybrid-parallel distributed ML using system cost models. It is challenging but necessary to design optimal
hybrid-parallel distributed ML strategies, e.g., composing data, tensor-model, and pipeline parallelism strategies for
optimal training speed. The problem is more challenging on distributed clusters with various types of GPUs. I have
developed pioneering system cost models to guide users to design hybrid-parallel ML strategies for any ML model
and any distributed environment [7, 8, 9].

3. Efficient and trustworthy federated learning. I have led the development of a few efficient FL algorithms [10, 11].
Among these, the most notable is FedMA, an FL algorithm that enjoys significantly faster convergence due to
a novel matched averaging model aggregation scheme (ICLR 2020 Oral; 890 citations to date; FedMA has been
adopted by IBM) [10]. I also conducted extensive research on the resilience of FL against malicious clients, which
has closed debates in the field [12]. Furthermore, my research has enhanced the computational efficiency of private
FM inferences using secure multi-party computation (ICLR 2023 Spotlight) [13].

1 Accomplished Works on Large-scale Machine Learning

1.1 Computation and Communication-efficient Distributed Machine Learning

Distributed ML speeds up training but also incurs substantial communication costs for synchronizing gradients or
activations. My research bridges system studies and optimizations as well as efficient algorithm designs, addressing
four core research questions (RQs).

RQ 1: Communication-efficient distributed learning by gradient compression. In data-parallel training, gradients
are communicated. We showed that many gradient compression approaches can be viewed as facets of a general
scheme, which dictates a specific atomic decomposition. This led to the development of ATOMO, a general compres-
sion framework, and established experimentally that using low-rank gradients instead of sparse ones, can lead to
significantly faster distributed training [3]. Since then, low-rank gradients have been extensively explored, and current
open-source libraries for communication-efficient training implement variants of these ideas. ATOMO, however, comes
with a fixed compression ratio, requiring balancing accuracy and per-iteration speedup. We demonstrated that such a
trade-off is not fundamental, and adaptive compression can help. We developed an adaptive algorithm that mitigates

https://cpal.cc/rising_stars_awardees/
https://cpal.cc/rising_stars_awardees/
https://www.llm360.ai/

Hongyi Wang (hongyiwa@andrew.cmu.edu), Carnegie Mellon University Research Statement

the detrimental impact of over-compression during critical learning regimes [14]. Large-scale experiments show that
this provides accuracy comparable to uncompressed training, and a 4× end-to-end speedup over static compression
methods. Beyond data parallelism, for model parallel training, we introduced a learning-based method for activation
compression as gradient compression is not directly applicable.

RQ 2: Utility of gradient compression. Gradient compression has significant potential for enhancing communication
efficiency in data-parallel distributed ML [3]. However, its benefits are primarily observed in distributed clusters with
limited communication bandwidth, while in clusters with sufficient bandwidth, it may hinder the speed of distributed
training. These observed inconsistencies prompted our comprehensive evaluation of the effectiveness of all popular
gradient compression methods across hundreds of real distributed setups. In typical data center setups with high
communication bandwidths, compression does not always yield significant speedups [7]. To quantitatively analyze
this phenomenon, we developed fine-grained cost models to evaluate the benefits of gradient compression methods
across various distributed system setups [7, 9]. Our findings identify the specific conditions under which gradient
compression contributes to significant speedups and guide the design of efficient future compression methods.

0 10 20 30 40 50 60
Number of GPUs

0
10
20
30
40
50
60

Sp
ee

du
ps

Ideal
Pufferfish
Data-parallelism
(PyTorch DDP)

Figure 1: Scalability of low-
rank training on ResNet-
50 trained on ImageNet-1k
dataset upto 64 GPUs.

RQ 3: Communication-efficient distributed training with no extra cost. We developed
the PUFFERFISH framework that bypasses the cost of compression by training low-rank
models [4]. Directly training low-rank models leads to accuracy loss, yet we avoid this by
borrowing ideas from the Lottery Ticket Hypothesis literature [15, 16]. We showed that
accurate low-rank models can be obtained by training a full-rank model, and then converting
to low-rank early in training. PUFFERFISH also retains full-rank for layers sensitive to low-
rank factorization. Nonetheless, these techniques necessitate extra hyperparameter tuning,
such as determining the optimal transition time from full-rank to low-rank and pinpointing
sensitive layers. Addressing this, we designed CUTTLEFISH to automatically estimate and
adjust these hyperparameters during training [5]. Using low-rank training, we managed to
achieve almost linear scalability in data-parallel training (Figure 1).

Params. (B) Valid. Loss Days

Llama2 1.3(1×) 2.25 10.33(1×)

Low-rank Llama2 0.79(0.59×) 2.32 7.57(1.37×)

Table 1: Performance of low-rank Llama2 pre-training
on the Pile-OpenWebText2 corpus using our methods.

Using the aforementioned low-rank training approach, we also
pre-trained a low-rank version of Llama2 (the base model with 1.3
billion parameters), which enabled the removal of 41% of redundant
parameters, resulting in a 1.4× end-to-end training speedup (as
shown in Table 1). Our low-rank frameworks have been adopted
by Sony for product development.

RQ 4: Hybrid-parallel distributed ML on clusters with various types of GPUs. It has been shown that neither data,
tensor-model, nor pipeline parallelism alone can achieve optimal FM pre-training speed. Designing hybrid-parallel
ML strategies, however, often demands extensive tuning efforts. One challenge is determining how to optimally assign,
for instance, one thousand GPUs along data, tensor-model, and pipeline parallelism dimensions. It becomes even
more challenging for heterogeneous clusters, i.e., those with various types of GPUs. To simplify this, we developed the
AMP framework that automatically tunes the hybrid-parallelism strategy [8]. We developed precise cost models and
an efficient search algorithm to pinpoint the best parallelism strategy. AMP performs equally well compared to human
expert-tuned strategies in typical distributed clusters. Notably, on heterogeneous clusters, AMP identified strategies
that achieved 1.8 times end-to-end speedup over NVIDIA’s leading Megatron-LM system for GPT pre-training.

1.2 Efficient and Trustworthy Federated Learning

FL is important for learning on decentralized and private data. My research studied efficient and trustworthy FL
methods, which tackles the following two RQs.

RQ 5: Better federated model aggregations. We developed the FedMA algorithm that constructs the shared global
model in a layer-wise manner by matching and averaging hidden elements with similar feature extraction signatures.
FedMA not only outperforms popular FL algorithms but also reduces communication costs significantly. FedMA has
been adopted by IBM.

RQ 6: The resilience of FL against malicious clients. My research indicates that providing robustness guarantees
against malicious clients in FL is highly challenging, if not impossible [12]. Specifically, we demonstrate that robustness
in FL generally leads to model robustness against adversarial examples, a major open problem, while detecting a
malicious FL client within a polynomial time frame is unlikely. We have also developed a novel category of training-
time attacks, called edge-case backdoors. These backdoors, difficult to detect, are readily inserted into federated models.

Page 2 of 4

Hongyi Wang (hongyiwa@andrew.cmu.edu), Carnegie Mellon University Research Statement

Edge-case backdoors cause the models to misclassify seemingly straightforward inputs that are unlikely to appear in
the training or test data. We demonstrate that skilled adversaries can exploit this backdoor across various ML tasks.

2 Future Research: Easier Foundation Model Developments and Deployments

My ultimate research goal is to empower everyone with the capacity to develop and deploy their own FMs on
personal hardware. This involves optimizing the use of existing hardware and jointly developing efficient algorithms
and systems. Such efforts are intended to bridge the gap between the constrained computing resources accessible to
academic research labs and the substantial resources demanded by FMs. Specifically, I propose the following aims:

Aim 1: Efficient Distributed Training by Optimally Leveraging Existing Hardware

Modern AI accelerators are often upgraded every two years (e.g., NVIDIA’s V100 in 2018; A100 in 2020; H100 in 2022).
However, older hardware often falls into disuse. This raises the question: “How can we effectively reuse older hardware
generations, integrating them with current versions or utilizing them independently?”

I plan to investigate two research aspects. First, can a group of older GPUs, if optimally parallelized, match or even
exceed the latest GPU’s performance? Secondly, how to build a distributed training system for optimal throughput on
clusters with GPUs from various generations.

The theoretical teraflops of four RTX 2080 Ti GPUs from 2017 are comparable to those of a single A6000 GPU from
2021, assuming ideal scaling. For the first aspect, we could co-optimize system and algorithm designs for parallelization
while maintaining model quality. Distributed training on mixed-generation GPU clusters faces challenges like uneven
GPU performance and memory capacities. For the second aspect, I propose the development of distributed training
compilers that consider the specifics of FM pre-training tasks and the particularities of hardware across different
generations. Additionally, I plan to deploy quantization and sparsification algorithms to address the bandwidth
heterogeneity among hardware of various generations.

Aim 2: System-friendly Algorithms for Pre-training Foundation Models

I am a deep believer that FMs will drive major breakthroughs in AI. However, the computational requirements they
entail, e.g., thousands of GPUs, surpass what academia can offer. A solution could be to deploy efficient algorithms for
optimal hardware use. I have noticed many inefficiencies in FM pre-training. My goal is to reduce computational
redundancy in FMs’ parameters, activations, and key-value caches, and to echo this with system enhancements.

I have used low-rank approximation to trim redundant model parameters [4, 5]. Yet, it is unlikely that every
model’s parameter weights are low-rank. Theory suggests that matrices often have both low-rank and sparse elements.
With this in mind, I intend to unify low-rank and sparsity concepts. I aim to investigate a system-friendly N:M sparsity
and find the best methods to arrange model weights to maximize the advantages of low-rank approximations.

On the system front, I intend to implement efficient CUDA kernels to support sparsity and low-rank structures. For
instance, the low-rank model weights can be executed using a fused GPU kernel to boost IO and memory efficiency,
which is similar to the core idea of FlashAttention [17].

Aim 3: Efficient Fine-tuning and Inference for Foundation Models

FMs are often fine-tuned for specific applications, including code generation and fundamental science, before their
deployment for inference tasks. However, both these stages are resource-intensive. I aim to develop automatic and
efficient algorithms and systems to speed up FM’s fine-tuning and inference.

For the fine-tuning phase, while PEFT techniques such as LoRA show potential, they often require extensive
hyperparameter tuning [6]. For instance, determining the specific model layers where LoRA should be applied and
fine-tuning the rank of the LoRA adapters are critical for achieving high accuracy. I intend to develop AutoPEFT, a
system designed to alleviate the need for such extensive tuning while maximizing resources like GPU memory. I
also propose deploying AutoPEFT in FL applications where clients conduct federated training using devices with
heterogeneous resources (e.g., computing power and memory capacity).

For efficient inference without compromising the model’s generation quality, I intend to merge model approxima-
tion with speculative decoding (SD). SD primarily uses a smaller draft model to generate, with a larger target model
for occasional verification. The key challenge lies in designing a compact draft model that closely mimics the target
one. I propose a holistic algorithmic framework that unifies techniques like low-rank, sparsification, quantization, and
knowledge distillation. I also plan to study how to jointly fine-tune the target and draft models for varied applications.

I am excited to identify and address the challenges in the development and deployment of FM via comprehensive
solutions combining algorithms and systems inspired by real-world application requirements and constraints.

Page 3 of 4

Hongyi Wang (hongyiwa@andrew.cmu.edu), Carnegie Mellon University Research Statement

References

[1] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of foundation
models. arXiv preprint arXiv:2108.07258, 2021.

[2] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

[3] Hongyi Wang∗, Scott Sievert∗, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen Wright.
Atomo: Communication-efficient learning via atomic sparsification. Advances in Neural Information Processing
Systems (NeurIPS), 2018.

[4] Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-efficient models at no
extra cost. Proceedings of Machine Learning and Systems (MLSys), 3, 2021.

[5] Hongyi Wang, Saurabh Agarwal, Yoshiki Tanaka, Eric Xing, Dimitris Papailiopoulos, et al. Cuttlefish: Low-rank
model training without all the tuning. Proceedings of Machine Learning and Systems (MLSys), 5, 2023.

[6] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. LoRA: Low-rank adaptation of large language models. International Conference on Learning Representations
(ICLR), 2022.

[7] Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and Dimitris Papailiopoulos. On the utility of gradient
compression in distributed training systems. Proceedings of Machine Learning and Systems (MLSys), 2022.

[8] Dacheng Li, Hongyi Wang, Eric Xing, and Hao Zhang. AMP: Automatically finding model parallel strategies
with heterogeneity awareness. Advances in Neural Information Processing Systems (NeurIPS), 2022.

[9] Song Bian, Dacheng Li, Hongyi Wang, Eric P Xing, and Shivaram Venkataraman. Does compressing activations
help model parallel training? arXiv preprint arXiv:2301.02654, 2023.

[10] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Federated
learning with matched averaging. International Conference on Learning Representations (ICLR, Oral), 2020.

[11] Junbo Li, Ang Li, Chong Tian, Qirong Ho, Eric Xing, and Hongyi Wang. Fednar: Federated optimization with
normalized annealing regularization. Advances in Neural Information Processing Systems (NeurIPS), 2023.

[12] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal, Jy-yong Sohn,
Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really can backdoor federated learning.
Advances in Neural Information Processing Systems (NeurIPS), 2020.

[13] Dacheng Li∗, Rulin Shao∗, Hongyi Wang∗, Han Guo, Eric Xing, and Hao Zhang. Mpcformer: fast, performant
and private transformer inference with mpc. The Eleventh International Conference on Learning Representations
(Spolight), 2023.

[14] Saurabh Agarwal, Hongyi Wang, Kangwook Lee, Shivaram Venkataraman, and Dimitris Papailiopoulos. Adap-
tive gradient communication via critical learning regime identification. Proceedings of Machine Learning and Systems
(MLSys), 2021.

[15] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
In International Conference on Learning Representations (ICLR), 2019.

[16] Kartik Sreenivasan, Jy-yong Sohn, Liu Yang, Matthew Grinde, Alliot Nagle, Hongyi Wang, Eric Xing, Kangwook
Lee, and Dimitris Papailiopoulos. Rare gems: Finding lottery tickets at initialization. Advances in Neural Information
Processing Systems (NeurIPS), 2022.

[17] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact
attention with io-awareness. Advances in Neural Information Processing Systems (NeurIPS), 2022.

Page 4 of 4

	Accomplished Works on Large-scale Machine Learning
	Computation and Communication-efficient Distributed Machine Learning
	Efficient and Trustworthy Federated Learning

	Future Research: Easier Foundation Model Developments and Deployments

